The effect of substrate stiffness on adult neural stem cell behavior.

نویسندگان

  • Nic D Leipzig
  • Molly S Shoichet
چکیده

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal and differentiation. In order to better understand the contribution of substrate stiffness to neural stem/progenitor cell (NSPC) differentiation and proliferation, a photopolymerizable methacrylamide chitosan (MAC) biomaterial was developed. Photopolymerizable MAC is particularly compelling for the study of the central nervous system stem cell niche because Young's elastic modulus (E(Y)) can be tuned from less than 1 kPa to greater than 30 kPa. Additionally, the numerous free amine functional groups enable inclusion of biochemical signaling molecules that, together with the mechanical environment, influence cell behavior. Herein, NSPCs proliferated on MAC substrates with Young's elastic moduli below 10 kPa and exhibited maximal proliferation on 3.5 kPa surfaces. Neuronal differentiation was favored on the soft est surfaces with E(Y) < 1 kPa as confirmed by both immunohistochemistry and qRT-PCR. Oligodendrocyte differentiation was favored on stiffer scaffolds (> 7 kPa); however, myelin oligodendrocyte glycoprotein (MOG) gene expression suggested that oligodendrocyte maturation and myelination was best on < 1 kPa scaffolds where more mature neurons were present. Astrocyte differentiation was only observed on < 1 and 3.5 kPa surfaces and represented less than 2% of the total cell population. This work demonstrates the importance of substrate stiffness to the proliferation and differentiation of adult NSPCs and highlights the importance of mechanical properties to the success of scaffolds designed to engineer central nervous system tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids

Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...

متن کامل

Isolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells

Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...

متن کامل

Differential Attachment of Pulmonary Cells on PDMS Substrate with Varied Features

Cancer is now a global concern, and control of the function of cancer cells is recognized as an important challenge. Although many aggressive chemical and radiation methods are in practice to eliminate cancer cells, most imply severe adverse toxic effects on patients. Taking advantage of natural physical differences between cancer and normal cells might benefit the patient with more specific cy...

متن کامل

Differential Attachment of Pulmonary Cells on PDMS Substrate with Varied Features

Cancer is now a global concern, and control of the function of cancer cells is recognized as an important challenge. Although many aggressive chemical and radiation methods are in practice to eliminate cancer cells, most imply severe adverse toxic effects on patients. Taking advantage of natural physical differences between cancer and normal cells might benefit the patient with more specific cy...

متن کامل

Bifunctional Hydrogels Containing the Laminin Motif IKVAV Promote Neurogenesis

Engineering of biomaterials with specific biological properties has gained momentum as a means to control stem cell behavior. Here, we address the effect of bifunctionalized hydrogels comprising polylysine (PL) and a 19-mer peptide containing the laminin motif IKVAV (IKVAV) on embryonic and adult neuronal progenitor cells under different stiffness regimes. Neuronal differentiation of embryonic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 30 36  شماره 

صفحات  -

تاریخ انتشار 2009